Isometric-path numbers of block graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometric-path numbers of block graphs

An isometric path between two vertices in a graph G is a shortest path joining them. The isometric-path number of G, denoted by ip(G), is the minimum number of isometric paths required to cover all vertices of G. In this paper, we determine exact values of isometric-path numbers of block graphs. We also give a linear-time algorithm for finding the corresponding paths.

متن کامل

Incidence dominating numbers of graphs

In this paper, the concept of incidence domination number of graphs  is introduced and the incidence dominating set and  the incidence domination number  of some particular graphs such as  paths, cycles, wheels, complete graphs and stars are studied.

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Corrigendum to "The path-partition problem in block graphs"

Recently, Wong [1] pointed out that Yan and Chang’s [2] linear-time algorithm for the path-partition problem for block graphs is not correct, by giving the following example. Suppose G is the graph consisting of a vertex w and a set of triangles {xi, yi, zi} such that each xi is adjacent to w for 1 i k, where k 3. Then p(G) = k − 1, but Yan and Chang’s algorithm gives p(G)= 1. He also traced th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Processing Letters

سال: 2005

ISSN: 0020-0190

DOI: 10.1016/j.ipl.2004.09.021